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Errors in a software design can be detected early on by analyzing a formal model
expressed in a specification language such as Z. Since software designs tend to involve
infinite (or at least very big) state spaces, it has been assumed that this analysis cannot be
automated. Consequently, few formal specifications have been extensively analyzed, and
the potential for early detection of errors has not been realized.

This paper argues that, while proving properties of designs may be intractable, detect-
ing errors may not be. State transitions of an operation can be enumerated exhaustively,
within a ‘scope’ defined by the user that places a bound on the size of state components.
Symmetry can then be exploited to reduce this finite state space. A state can be shown to
be symmetrical, in the context of the analysis, to a state already examined, and thus
guaranteed not to reveal an error.

Preliminary experiments with a prototype are promising. A small scope often seems
sufficient to catch errors, and exhibits enough symmetry to reduce search by a factor of
10 or more.
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1 Introduction

The remarkable success of model checking in analyzing hardware designs raises an
obvious question. Can the same technique — namely massive enumeration of cases —
be applied to software designs? The payoff would be spectacular.

Pioneers of formal specification realized that its primary justification was not for-
malism per se (since, after all, judicious use of informal mathematics can provide
much of the intellectual benefit with fewer restrictions), but the opportunities it
opened up for mechanical analysis. Questions about the consequences of design de-
cisions might be cast as theorems and then answered automatically [GH80].

Unfortunately, such theorems tend to be undecidable. Software, unlike
hardware, is often designed initially with the assumption of unlimited resources,
and, unless these can be modelled purely as sets, no interesting property can be de-
termined effectively. And even if the state space of the software system is finite, it is
usually so large that any kind of naive enumeration is hopeless. A simple binary re-
lation over a set of three elements can have 22 values; take three such relations and
the size of the state space already matches that of a complex hardware design. For
these reasons, most research on analysis of specifications has concentrated on theo-
rem proving, and the possibility of automatic analysis by model checking has been
dismissed as unrealistic: an idea too stupid to be seriously pursued.

Checking software designs by enumerating states is not, however, as stupid as it
may appear, for three reasons. First, finding counterexamples may be feasible when
proof is not. Complete search of an infinite state space is impossible, of course, so
model checking will not, in general, be capable of demonstrating that a design has
a certain required property. In practice, however, most designs contain errors. In
economic terms, early detection of errors has more value than assurance of correct-
ness, which, as detractors of formal methods have repeatedly observed, can never
be guaranteed anyway. A formal specification is by nature an abstraction and by ne-
cessity partial, so that the distinction between high confidence of a design’s correct-
ness and perfect assurance cannot be maintained. A model checker that examined
only a tiny proportion of the state space but found a high propertion of errors in
the design would be very useful.

Second, the transition relation of a software design is usually complex enough to
merit ‘single-step’ analysis: one often wants to determine properties of a single exe-
cution of some operation. The behaviour of hardware, on the other hand, is usually
viewed over sequences of simple steps. This kind of temporal analysis requires, at
the very least, a record of which states have been visited; the size of this data struc-
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ture strictly limits the number of states that can be examined. For a single-step
analysis, the states can be generated in order and discarded.

Third, it may be possible to find ways to search enormous state spaces. Witness
the discovery in hardware verification that a small binary decision diagram can
characterize a huge set of states, allowing vastly bigger designs to be checked
[BC+90]. And abstraction can sometimes enable even an infinite space to be
searched by partitioning it into a finite number of equivalence classes [CGL92,
Jac94].

This paper describes a model checking algorithm for analyzing designs written in
a minimal specification language intended to capture the essence of Z [Spi89]. Z
was chosen for its popularity, because it is model-based (and thus more overtly
suited to model checking than algebraic languages such as Larch), and because it
has a simple set-theoretic semantics (unlike VDM, which adopts the domains of de-
notational semantics). The purpose of the algorithm is to detect counterexamples,
so the search is confined within a ‘scope’ that limits the size of the objects that
model the state. A single-step property of a Z specification amounts to a logical as-
sertion, typically an implication whose hypothesis is the specification of an
operation and whose consequence is a property whose truth is to be determined. A
counterexample is thus a binding of variables (the state components) to values (par-
ticular sets, relations, etc.) for which this assertion is false.

The notable feature of this algorithm is that it exploits symmetry in the state
space. Some states can be eliminated from the search a priori, since they are known
to be equivalent, in the context of the claim being evaluated, to states that have al-
ready been examined. This is determined fully automatically and, unlike techniques
based on abstraction, requires no hints from the user. Preliminary experiments indi-
cate that exploiting symmetry usually reduces the search by a factor of 10 or more.

2 Some Examples (and Counterexamples)

Consider a toy telephone system whose state consists of two components:

Called: Ph < Num

Net: Num — Ph
The first is a relation that associates with each phone zero, one or more numbers
with which it has a call in progress. The second is a function mapping numbers to
phones. The set of active connections between phones is a relation




Conns: Ph — Ph
Conns = Called o Net

obtained by composing the state components as relations. The actions performed
by users at their phones can be represented as operations on the state of the system.
To add a party with number 7 to a conference call from phone p, for example, one
might execute
op bridge (p: Ph, n: Num)
pre p € dom Called A n & ran Called
post Called’ = Called U {(p,n)} A Net’ = Net

The precondition says when the operation will succeed: the phone p must already
have a call in progress, and no other phone must be calling the number #. Some
other part of the specification of the system will say what happens when the
precondition is violated; including it here allows us (temporarily at least) to ignore
that complication. The postcondition gives the effect of the operation: the phone p
is mapped to # in Called, but Net is unchanged.

(This specification incidentally, is not in Z. The unusual role of invariants and
preconditions in Z is, from the point of view of model checking, an irrelevant dis-
traction; what matters is the representation of the state in terms of relations and
the description of an operation’s behaviour with a logical formula. Also, the
symbol o denotes backward not forward composition in Z, contrary to the
standard usage adopted here.)

Many useful properties of an operation can be expressed as invariants on the
state. Suppose, for example, that for billing purposes we forbid a phone from being
both a caller and a callee at once:

invB = (dom Conns N ran Conns = @)

To see whether the operation is consistent with this assumption, we can check the
formula

invB A pre A post = invB’
where invB’ is the invariant invB with Conns’ substituted for Conns. A
counterexample to this formula would yield a state in which the invariant holds
and the operation can execute successfully but result in a state that violates the

invariant.
The checker finds such a counterexample after examining only 38 states:

Called = {(py, 1)}




Net = {(n;, p1)}

b="0;

n=ny
This counterexample reminds us that we forgot the obvious: # should not refer to a
phone already making a call. But its small size also draws our attention to two
more subtle points. First, we neglected the possibility that a phone call itself, which
we shall surely want to rule out. Second, we never required that Net be total, or
that calls only be made to numbers attached to phones.

Here’s a second example. The precondition included

n ¢ ran Called
with the intent of ensuring that we not connect to a phone that has already been
called by another phone. Formulating this as an invariant, we might say that two
different phones cannot call the same phone

invC = (p, p”') € Conns A (p’, p”’) € Conns = p=1p’
or equivalently that the inverse of Conns is a function
inyC = Conns™ € (Ph — Ph)
This invariant is also not preserved, and after checking 185 states, the checker finds

Called = {(p1, n1), (P2, 12)}

Net = {(112, p3)9 (n3: P3)}

p=p;

n=n;

The essence of this counterexample is the value of Net. A phone may be called
through one of several numbers. To check if a number corresponds to a phone that
has been called it is therefore not sufficient to determine that the number itself was
not called. We must either require that Net be injective or strengthen the precondi-
tion.

This example, although far from a real specification of a telephone switch
[MZ94], neverthess illustrates some realistic features of counterexample
generation. First, we have seen that quite subtle errors can be revealed in small
counterexamples; in all three cases, considering only 3 phones and 3 numbers was
enough. Second, a counterexample has an immediate, tangible benefit. It can be
hard to determine, when a theorem prover fails to prove a theorem, what has gone
wrong; a counterexample leaves little room for doubt, and often reveals several

faults at once.
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The remainder of the paper explains how the search for a counterexample can
be drastically reduced by exploiting symmetry in the state space. A rough idea of
how this works can be gained by looking at some of the states that arise in our ex-
ample.

Figure 1 shows a state just before execution of the bridge operation. The two
graphs depict the relations Called and Net; the circles show the values of p and #,
written over the nodes of Called to show where the new pair will appear in Called'.
The search is being conducted within a scope of three phones and three numbers.

Suppose we apply a permutation to the entire state that exchanges n; and #,,
leaving Called unchanged by altering Net. The permutation is therefore a symmetry
of Called but not of Net. It is also, however, a symmetry of the entire state, in the
following sense. The logical formula being checked (in the case of either invariant
discussed above) is cast entirely in terms of Conns, the product of Called and Nez,
and Conns’, the product of Called’ and Net. Permuting #; and n, changes Net, but
neither of these products, both of which include the pair (p4, p;) regardless of
whether the intermediate element is 74 or #,. Having checked the state shown, the
symmetrical state with the value of Net altered (the edge moving as shown to the
new dotted position) can therefore be safely omitted from the search.

Symmetry thus allows fewer states to be examined before discovering a
counterexample. Table 1 shows its effect in reducing the state space. The checker
was set to ignore counterexamples and complete the search; the total number of
states searched is shown for different declarations of the Net relation, followed by
the reduction factor. The worst case is when Net is injective, because it eliminates

Called Net
p
pz@iz nl nl O———=0 Pl
920 n2 w20 o2
p30 ©)n3 n3 0 O 3
n

Figure 1: An example of a symmetry




the symmetry of two domain elements that map to the same range element.

The first set of results applies to the checking of the firstof the invariants
discussed above, and the second set applies to the second invariant. There is more
symmetry to exploit in the second invariant, because it does not relate the domain
and range of Conns, which may thus be permuted without visible effect.

Type of Net Checking invB Checking invC
#States Factor #States Factor
total function 11,696 11 2002 62
injective function 16,866 5 3214 27
partial function 22,966 13 4606 64
arbitrary relation 168,984 14 34,492 68

Table 1: Reduction of the state space due to symmetry

3 Relational Calculus

The simplicity of Z, and to a great extent its power and flexibility too, derives from
treating functions, mappings and sequences uniformly as sets of pairs — that is, rela-
tions. Rather than describing the checking of Z directly, we shall instead consider
formulae in a much simpler relational language. This exposes the fundamental
issues by stripping away syntactic niceties and makes the algorithm’s application to
similar languages (such as AMN) more apparent. The language may also turn out
to be a good intermediate language into which Z can be translated prior to
checking. It is based on the relational calculus given its current form by Tarski and
others (and nicely summarized in Chapter 2 of [SS93]).

The language is purely relational: there are no sets or atoms. A relation is binary,
but may be heterogeneous and thus has a type (S,T). When we give a model later,
we will interpret S and T as the sets from which the domain and range elements are
drawn respectively. Basic types such as § and T are distinct; there is no subtyping.
Nor may the elements of S and T themselves be relations: the language is strictly
first-order. We shall assume that a formula is coupled with a type declaration that
assigns a type to each relation variable, and that the formula itself is well-typed.

The terms of the language are made of relation variables P, Q, R, etc., and from
subterms s, t, etc., composed with

. union s U £ and intersection s N #: these correspond to the set union and




-

intersection of the relations represented as sets of pairs;

- composition s o %, also called relational product;

- complement s’, defined with respect to the type of s, giving the relation of the
same type whose pairs are all those not in s;

- inverse ™.

There are also three constants: 0 (the empty relation), L (the universal relation)
and I (the identity). To be precise, we should distinguish instances of these
constants that have different types, but it is easy to infer the types from the
context, so we shall not bother. In the formula

P=QoL
for example, if P has type (S, T) and Q has type (S, U), then the appropriate univer-
sal relation L has type (U, T), and is interpreted as the cartesian product of the sets
denote by U and T.

Applying the ordering < to terms is the only way to generate elementary formu-
lae; s < # will be true when the set of pairs denoted by s is a subset of the set
denoted by ¢. The ordering is antisymmetric, so s = ¢ when s c # and ¢ € s. Finally,
formulae may be joined by the logical connectives, A, V, and —.

To see how to express familiar specifications in this language, note that a subset
u of a set X can be represented as a relation on X X Y that pairs each element of
with every element of Y. A relation # thus denotes a set if

uol=u.

Similarly, a point x in X is a relation on X X Y that pairs the single element x with
every element of Y. A relation x is a point if

x=xoL Axox~cl A—-x=0.
A pair of points (x, y) is represented by the relation
xoy”
It is easy to write formulae that classify relations in the manner of Z’s type declara-
tions. A relation R is total if
L=RoL
and a function if
RoR7cl
It is surjective if its inverse is total, injective if its inverse is a function, and bijective

if it is injective and surjective.
The familiar operators of Z are also easily defined. The domain of a relation R is




just R o L, and its range is R~ o L. The domain restriction of a relation R to a set S,
written in Z as S < R, is S N R. Relational override is defined by

PeQ=(FPn(@Q-°L))VQ.

4 A Model of the Relational Calculus

Reasoning in the relational calculus can be conducted purely algebraically, without
appealing to any concrete representation of relations. Since our purpose, however,
is finding counterexamples — concrete values of variables for which a formula does
not hold — the representation of relations is critical.

We shall start with a conventional model of relations. The meaning of a formula
f and its constituent subformulae and terms is defined with respect to an interpreta-
tion (U, T, p) consisting of

- a universe U of values,

- a mapping T that associates with each type name T in the type declarations of f

a set T[T] U, disjoint from the set T[[S]] associated with a different type

name S, and
- 2 mapping p that associates with each variable R of type (S, T) in f a set of pairs

plIR] € 7S] x ~IT]. ,
The meaning of a formula is defined inductively over the structure of the
formula. Consider terms first. The meaning of a relation variable is given directly

by the interpretation

MIR] = plIR]
For the constants, the zero relation 0, the identity relation It of type (T, T) and the
universal relation Lgr of type (S, T), we have

M[0] =@

MIIA = {(x, x) | x € TITT}

MLl = =[S X ©[T]
The complement s’ of a term s of type (S, T) denotes the largest relation of the
same type that includes none of the pairsin s

M[s'] = {(x, ) € TSI < [TT 1 (x, ) € [sI}
The other relational operators have their conventional meaning:

Mlsut] = {(x, y) | (x,y) € M[s] or (x, y) € M[t]}}
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Mlsn ] = {(x, ) | (x,y) € Mls]l and (x, y) € M[z]1}
M[s o t] = {(x,y) | 3z. (x, z) € M[[s] and (z, y) € M[]}
M[s™] = {(y, x) | (x, ) € Ms]}.
The ordering on relations denotes the subset ordering on their pair sets:
M[s ct] = V(x, y) € M[s]l. (x,y)€ M[t]
And finally, the logical connectives:

MIf A gl = MIf] and Mig]

MIf v gll = MIf]l or Mgl

M[—f1 = not MI[f]l

Under a given an interpretation, the meaning of a formula is either true or false.
If it is true, the interpretation is said to be a model of the formula if it is false, the
interpretation is a counterexample. A formula that has a model is satisfiable; a for-
mula that has no counterexamples is valid.

5 A Different Model

Consider checking the formula
~PcQ V QoRc PeoR

which, were P and Q to be exchanged in one of the subformulae, would express
the monotonicity of composition, but as it stands is not valid. One counterexample
maps P to the empty relation, Q to the singleton {(a, b)} and R to {(b, c)}.
Mapping R instead to {(a, )} does not give a counterexample.

Suppose we are enumerating interpretations in a search for counterexamples,
and we generate this latter interpretation first. Generating values for R, we might
then consider {(a, ¢)}. This is guaranteed not to be a counterexample for a simple
reason: the second element of the pair is irrelevant, and cannot affect the meaning
of the second subformula. In general, any permutation of the range elements of R
will preserve the meaning of the formula. What matters here is the matching of the
ranges P and Q to the domain of R; the counterexample that maps R to {(b, c)}
works because b matches the second element of the pair in Q but no second
element in R, and thus distinguishes Q and R.

This suggests that to exploit such symmetries we should focus not on the values
of the elements in relations’ pairs, but in the mappings between them. We therefore
define a new kind of interpretation. First, we must distinguish the occurrence of an
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element in different places: the range elements of R in the example above must be
disjoint from the domain or range elements of P or Q so that we can refer to them
independently. To do this, we label each occurrence of a type name T in the type
declarations with an index to distinguish it from other occurrences of the same
name. For example the declarations

P: (S, S)

Q: (1, 0)

R: (5, D
would be transformed to

P: (4, $2)

Q : (TIJ UI)

R: (S3, T5)

A wired interpretation (U, T, p, W) of a formula f whose type declarations have
been transformed in this manner consists of:

- a universe U of values, as before,

- a mapping T that associates with each type name T; in the type declaratlons of f
a set T[[T;]] € U. These sets must, as before, be disjoint; furthermore, sets t[T;]]
and T[[T;]] associated with two type names that differ only in their index must
have the same cardinality,

- a mapping p that associates with each variable R of type (S, T) in f a set of pairs

plR] < *[IS] X ~[T1, as before, and

- an additional component W.

W is called the wiring. It is an equivalence relation on U with the following
property:

- for each x in 7[[T;] there is exactly one y in each set T[T}], and no z in any

T[S, ], such that xWy
where S and T are distinct type names. Intuitively, W matches elements in dlfferent
places that have the same value in the underlying type.

Operators on a single relation, and the logical connectives, are interpreted just as
before. The meaning of a term involving two relations, however, now depends on
the wiring; where equality appeared in the definition before, the wiring equivalence
W now takes its place.

M[sut] = {(x,v) | (x,vy) € M[s] or 3(x’, y') € M[[t]. xWx’ and yWy'}

M[snt] = {(x, y) | (x,y) € M[[s] and 3(x’, y') € M[[t]. xWx’ and yWy'}

M[s o t]l = {(x, y) | 3z, 2" (x, 2) € M[[s]| and zWz’ and (z’, y) € M[t]}

12




Likewise, the subset predicate is relative to the wiring:

M[s ct] = V(x,y) € M[s[. 3(x’, y') € M[It]. xWx" and yWy’

Note that the meanings of union and intersection are no longer symmetrical in
their arguments. The term s U ¢ has the type of s. It might instead have the type of
£, or, perhaps more naturally, a new type that is the union of the types of s and . It
turns out, however, to be simpler not to introduce new types, and the decision to
use s’s type is arbitrary. As a result, it is no longer obvious that union is
commutative. The terms s U ¢ and ¢ U s will in general have different meanings;
however, any pair (x, y) in one will match a pair (x, y’) in the other, with xWx’ and
yWy’, so that we will have

tUscsUt
and

sUtctUs
as expected.

We shall call a wired interpretation of a formula f for which f is false a wired
counterexample of f.

6 Scopes, Permutations and Adequate Assignment Sets

In general, a formula will have an unbounded number of interpretations, because
one or more of the basic types will be infinite. It is therefore necessary to limit the
search for a counterexample to some finite subset of the interpretations. We would
like to do this systematically, rather than by just selecting arbitrary interpretations.

A search is conducted within a scope, which assigns a natural number to each
type name representing a bound on the number of values of the type:

scope: type — Nat
A wired interpretation must map two type names differing only in index to sets of
the same cardinality, so any scope must assign the same value to both. We shall
therefore not distinguish the conventional scope from the wired scope, since each
can be obtained trivially from the other.

For a scope s, we shall say that a type assignment 7 is adequate if it maps each
type name T to a set whose cardinality is at least s(T). If for any type assignment T
over universe U that is adequate for a scope s there is a variable assignment p such
that a formula fis false under the interpretation (U, 7, p) , we shall say that f has a
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counterexample in the scope s.

For any formula, there is some set A of possible assignments of relation
variables to relation objects. Since the wiring relation effectively permutes these ob-
jects, not all assignments will be needed. In enumerating the possible values of a re-
lation variable, out of a set of isomorphic relations only one is required, and this
representative may be selected arbitrarily.

A permutation m is a bijection on a finite set X

mX—-X
and may be applied pointwise to a relation

reSxT

7(r) = {(r(a), m(b)) | (a, b) € 7}
if it preserves the relation’s type, so that m(r) € § X T. To ensure this, we require -
first that

X=SuT
and second that the permutation 7 be expressible as the union of separate permuta-
tions on the relation’s domain and range; that is

m=m;Um,
where

mpe $— S

e T— T.
A permutation can be applied pointwise to an assignment p under analogous condi-
tions: the domain of the permutation must be the union of the domains and ranges
of the relations in p, and the permutation must be decomposable into permutations
that do not confuse types.The result of applying a legal permutation 7 to an assign-
ment p is

w(p)={v—nlr)|v—r€p}

Two relations 7 and s are isomorphic, written 7 = s, if there is a permutation 7
such that

w(r)=s \
and two assignments p and p’ are isomorphic, p = p’, if there is a permutation
such that m (p) = 1 (¢"). Because the types of the individual relations in a wired in-

terpretation are disjoint, a permutation on an assignment can always be
decomposed into elementary permutations on individual relations. It follows that
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two assignments are isomorphic when their constituent relations are pointwise iso-
morphic.

Given a type assignment T adequate for some scope s, a set of variable
assignments

A= {pla P25 +ee pn}
is adequate if every variable assignment p that respects T is isomorphic to some as-
signment in A. Now comes the crucial justification for the notion of wiring:

Theorem 1. Suppose T is an adequate type assignment over a universe U for a
formula f in a scope s. Let A be an adequate set of variable assignments. Then
f has a counterexample in the scope s exactly when it has a wired
counterexample (U, T, p, W) for some variable assignment p € A and wiring

w.

In other words, varying the wiring relation achieves the same effect as permuting
the relations of the assignment. Instead of checking all assignments, we can pick an
adequate set that embodies all assignments of variables to ‘shapes’ and then ‘
enumerate all wirings of these shapes. The benefit of this complication is that the
permuting of relations has been localized in the wiring relation, where symmetry
can be exploited more simply.

7 Symmetry in Assignments and Wiring Relation Equivalences

A permutation 7 that leaves an assignment p invariant

p = (p)
is said to be a symmetry of p. Remember that m acts on the elements of the universe
U; it may be applied pointwise to the relations of p only when it does not exchange
elements of one variable’s relation with elements of another’s, or elements of a re-
lation’s range with its domain. The symmetries of an assignment p form a group
under functional composition called the symmetry group of p.

Now suppose we apply the same permutation  to some wiring W (without the
constraint, since W is symmetric and m will thus inevitably confuse its domain and
range). Over any pair of type sets, W is bijective, so unless 7 permutes elements in
both sets in the same way, it cannot be a symmetry. Nevertheless, even though W
# W, the meaning of the formula under the wiring 7W must be the same as the
meaning under W:

15




Theorem 2. If 7 is a symmetry of p then (U, T, p, W) is a wired counterexample
of a formula f exactly when (U, 1, p, (W)} is.

Consequently, not all wirings need be consided for every assignment. Two
wirings W and W’ are equivalent for an assignment p if there is a symmetry  of p
such that W’ = r(W). From each equivalence class of wirings, only one wiring is
needed, and it can be picked arbitrarily.

8 Generating Wirings

A wiring relation only matches elements that belong to the same underlying type,
so it can be decomposed into a collection of relations, one for each type. Each of
these relations wires the elements of the sets T[T, T[], T[ T3], etc., correspond-
ing to the underlying type T; between any pair of these sets [ T;] and [ T;] the re-
lation is bijective. The wiring relation is the union of these individual relations.

Ignoring symmetry then, a full set of wirings can be generated by taking all com-
binations of individual wirings. These are enumerated as follows. Imagine the sets
T[T,1, TT>1, 70 T3], etc., laid out in a row so that each occupies a vertical column.
Take the first element of the first column. This may be matched to any of the
elements in the second column, and then to any element of the third, and so on.
Each sequence of choices yields a path through the full graph that connects every
element in T[[T,] to every element in T[T5]], every element in t[T,] to every
element in T[[T;]] and so on, the path itself being a matching of one element in
T[[T,;] to one element in each of the other T[T;].

For each of these paths, we now determine the set of paths that start at the
second element in the first column but none of which overlap with the path from
the first element. Repeating this procedure until no paths remain gives a tree,
whose 7th level represents the choice of path from the ith element of the first
column. The leaves of the tree then give the wirings, each being obtained by form-
ing a relation from the tuples at each the nodes on the path (this time the tree path)
from the root to the leaf.

Symmetry allows some of these wirings to be omitted. Theorem 2 tells us that
having generated a wiring w we should not subsequently generate a wiring m(w) if
7 is a symmetry of the variable assignment. In the enumeration algorithm, this is
avoided by noting that two paths p and p’ such that p’ = 7(p) are equivalent, and
only one should be generated.

16




The equivalence of paths is not determined, of course, by attempting to find a
suitable permutation. Instead, for each variable assignment, the elements of the
universe U are partitioned into equivalence classes. Given any element # € U, and
variable assignment p, the obit of u is the set of elements that are obtained by
applying to it some permutation that is a symmetry of p:

orbit (u, p) = {m(u) | Am. w(p) = p}

Since the symmetries of p form a group, belonging to the same orbit is an
equivalence relation and the orbits partition the universe. The symmetries of a vari-
able assignment may thus be represented as a colouring function that maps
elements of U to orbits:

colour: U— Orbit

Two paths a and b are equivalent when their respective elements belong to the
same orbit:

equiv (g, Ay vy Ay (b1, by oy b)) = Vit 1. colour (a;) = colour (b;)

The equivalence check ensures that, having built a partial wiring, the algorithm
does not generate completions that differ immediately in the choice of the next
path selected, when those paths are in fact equivalent. But unnecessary wirings may
still be constructed because two paths may be selected in different orders. To rule
this out, we pick any ordering on orbits

<: Orbit + Orbit
extend it lexicographically to paths

p < p’ = first (p) <first (p') vV (first (p) = first (p) A rest (p) <rest (p')
and require that paths always be generated in order. Having generated a path p,
subsequent choices p’ at the same level of the tree must satisfy p < p’, and
subsequent choices at lower levels of the tree must satisfy p <p’.

One detail remains: how the orbits are determined. Remember that no permuta-
tion exchanges elements of one relation with elements of another. So the orbits of
the elements of each relation in the assignment can be determined independently.
Our prototype checker constructs the assignments from a fixed repertoire of
relation values that are bound to variables in all possible combinations. Each
relation value is stored along with its symmetries. Suppose, for example, we have a
relation

r: (S, T)

and a type assignment T with




81 =11, 2, 3}
o Tl = {4, 5, 6}

Some values r might take, along with their symmetries, are:

relation domain symmetry range symmetry
{} {{1,2,3}} {{4,5,6}}
{1, 49} {{1}, {2,3}} {{4}, {5, 6}}

{1,49,1,5r {{1},1{2,3}} {{4, 5}, {6}}
The second and third columns give the orbit partitionings for t[[S] and T[[T]. The
colouring function is trivially obtained from these partitionings. Using letters of the
alphabet to label orbits

Orbits = 1A, B, C, ...}

these relations might give:

relation colouring function
0 (1—A,2—A 3—A4—D,5—D,6— D}
{(1, 4)} {1-A,2—~B,3—B,4—D,5—E, 6— L}

{1,4,d,5)} {1—A2~B,3—B,4—D,5—D,6—E}

9 Discussion

Existing checking methods fall into two classes. Those aimed at proving properties
of specifications cannot be automatic, since any interesting property of a system
whose states are unbounded is undecidable. Theorem provers have been used
successfully to verify some substantial designs, but in all cases they require users
with the mathematical sophistication to invent lemmas and proof strategies, and a
lot of time to spare. For safety critical systems, the investment may be worthwhile,
but for routine design work something more economical is called for.

The second class of checking methods is more pragmatically motivated. The
specification is ‘animated’ by calculating the behaviour resulting from specified ini-
tial conditions. Such execution typically requires that the specification be written in
a constructive form without implicit definitions. The IFAD tool for VDM [ELL94,
LL91]}, for example, can execute explicit function definitions, even when they con-
tain non-deterministic constructs. Z~~ [Val91] is a subset of Z that requires
equalities to be ordered with constructive expressions on the right-hand side so
they can be interpreted as assignments. (Z™ is not, incidentally, intended as a speci-
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fication language but as a target for refinement of Z.) Aslantest [DK94] embodies
an interesting hybrid approach: the specification can be executed not only over test
cases, but also over symbolic initial conditions. The result of a symbolic execution
is checked against a specified final condition using a simplifier, which, if always to
succeed, must be a theorem prover.

Animating a specification suffers from the same basic problem as testing. When
the state space is huge, testing a small number of cases is very unlikely to uncover

faults. Counterexamples usually correspond to combinations the designer never

considered, and would probably have omitted from a test suite. It is not that testing
cannot show the absence of errors; it often fails to show their presence.

The approach described here falls into neither class. Like animation, it is partial,
but since the states within the scope are enumerated automatically, no specification
of test cases is required. Consequently, the number of cases examined is orders of
magnitude greater — 100,000 cases is not a large model checking problem — and
more likely to include unanticipated counterexamples. Like theorem proving, the
checking method is designed for fully implicit specifications, without demanding a
translation into an executable subset.

Counterexample generation lacks the mathematical cachet of proof, but, in engi-
neering terms, it has an advantage. A counterexample has a value quite
independent of the specification from which it arose. A designer might be pleased
that his design has been formally modelled and proven consistent, but might have
doubts about the fidelity of the model. A counterexample, in contrast, can be
immediately put to the test; if it reveals an error in the actual design, the model no
longer matters.

Symmetry has been used before to reduce state space search, but not, it seems, in
the fine-grained fashion proposed here. Clarke, Filkorn and Jha show how global
symmetries of the transition relation can be exploited [CF]J94]. The state machine
representing a protocol that coordinates the caches of several processors, for exam-
ple, might be symmetric under the exchanging of one processor for another or one
cache line for another. With knowledge of these symmetries (provided to the
checker by the user), a quotient machine can be constructed with fewer states than
the original machine, each representing a set of states that are equivalent under
symmetry. Z specifications do not seem to have global symmetries of this sort.
Instead, we exploited the symmetry of one possible relation value a variable may
take, in order to reduce the set of states obtained by varying the values of other
variables. Note also that we never required any symmetries to be specified by the
user: they are inferred by the tool from the symmetries of the underlying relation
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shapes.
The checking method has been implemented as a prototype in Standard ML of

New Jersey. It was built for proof of concept, to demonstrate that symmetry can be
used to reduce the search space, and thus provides none of the features a usable
tool would require. For example, the decomposition of the wiring relation must be
specified by the user, and referenced explictly in the formula. The prototype also
runs absymally slowly: it examines about 5,000 states/minute on a Sparc 5. We plan
now to construct a usable tool (in C). It will read specifications in a subset of Z and
derive the structure of the wiring relation automatically. It will allow the user to ex-
periment with different scopes, constructing, for each, a set of appropriate relation
values along with their symmetries. Furthermore, it will offer, for each relation
variable, the choice of restricting its values to functions, injections, bijections, etc.

Much research remains to be done. Quantifiers and higher-order relations are
not currently handled, nor are interpreted types (such as the integers). Also, a lim-
ited form of type inference may be required. If a formula’s type declarations are
unnecessarily restrictive, the wiring relation will not be decomposed as much as it
might be, and the resulting search will be larger. For example, the formula

dom (p o q) cdom p
does not require the domain of p and range of g to have the same type. The type
declaration

p: (5, 1)

q: (T, S)
would give wirings that enumerate all bijections between the domain of p and
range of g, even though their relationship is irrelevant. The type declaration

p: (5 1)

q: (I, R)
on the other hand, gives wirings that relate only the range of p and domain of g.
This divides the size of the search by the factorial of scope(S).

The fundamental premise of the checking method described here is radical but
simple minded: that, in practice, errors in specifications can be detected by system-
atically exploring even a tiny portion of the state space. Exploiting symmetry can
reduce the search dramatically, but it seems unlikely that the exponential nature of
the problem will be overcome. This is, perhaps, only a theoretical concern. If con-

stant factors gained by search reduction strategies, by succinct representations and
by faster hardware bring the analysis of realistic, industrial designs within reach, as-
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ymptotic complexity will surely be irrelevant.
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